3.201 \(\int \frac {(a+b x^2)^{3/2}}{\sqrt {c+d x^2}} \, dx\)

Optimal. Leaf size=260 \[ -\frac {\sqrt {c} \sqrt {a+b x^2} (b c-3 a d) \operatorname {EllipticF}\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{3 d^{3/2} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+\frac {2 \sqrt {c} \sqrt {a+b x^2} (b c-2 a d) E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 d^{3/2} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+\frac {b x \sqrt {a+b x^2} \sqrt {c+d x^2}}{3 d}-\frac {2 x \sqrt {a+b x^2} (b c-2 a d)}{3 d \sqrt {c+d x^2}} \]

[Out]

-2/3*(-2*a*d+b*c)*x*(b*x^2+a)^(1/2)/d/(d*x^2+c)^(1/2)+2/3*(-2*a*d+b*c)*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)
*EllipticE(x*d^(1/2)/c^(1/2)/(1+d*x^2/c)^(1/2),(1-b*c/a/d)^(1/2))*c^(1/2)*(b*x^2+a)^(1/2)/d^(3/2)/(c*(b*x^2+a)
/a/(d*x^2+c))^(1/2)/(d*x^2+c)^(1/2)-1/3*(-3*a*d+b*c)*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*EllipticF(x*d^(1/
2)/c^(1/2)/(1+d*x^2/c)^(1/2),(1-b*c/a/d)^(1/2))*c^(1/2)*(b*x^2+a)^(1/2)/d^(3/2)/(c*(b*x^2+a)/a/(d*x^2+c))^(1/2
)/(d*x^2+c)^(1/2)+1/3*b*x*(b*x^2+a)^(1/2)*(d*x^2+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.16, antiderivative size = 260, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {416, 531, 418, 492, 411} \[ -\frac {\sqrt {c} \sqrt {a+b x^2} (b c-3 a d) F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 d^{3/2} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+\frac {2 \sqrt {c} \sqrt {a+b x^2} (b c-2 a d) E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 d^{3/2} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+\frac {b x \sqrt {a+b x^2} \sqrt {c+d x^2}}{3 d}-\frac {2 x \sqrt {a+b x^2} (b c-2 a d)}{3 d \sqrt {c+d x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x^2)^(3/2)/Sqrt[c + d*x^2],x]

[Out]

(-2*(b*c - 2*a*d)*x*Sqrt[a + b*x^2])/(3*d*Sqrt[c + d*x^2]) + (b*x*Sqrt[a + b*x^2]*Sqrt[c + d*x^2])/(3*d) + (2*
Sqrt[c]*(b*c - 2*a*d)*Sqrt[a + b*x^2]*EllipticE[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(3*d^(3/2)*Sqrt
[(c*(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[c + d*x^2]) - (Sqrt[c]*(b*c - 3*a*d)*Sqrt[a + b*x^2]*EllipticF[ArcTan[(
Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(3*d^(3/2)*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[c + d*x^2])

Rule 411

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticE[ArcTan
[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 416

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(d*x*(a + b*x^n)^(p + 1)*(c
 + d*x^n)^(q - 1))/(b*(n*(p + q) + 1)), x] + Dist[1/(b*(n*(p + q) + 1)), Int[(a + b*x^n)^p*(c + d*x^n)^(q - 2)
*Simp[c*(b*c*(n*(p + q) + 1) - a*d) + d*(b*c*(n*(p + 2*q - 1) + 1) - a*d*(n*(q - 1) + 1))*x^n, x], x], x] /; F
reeQ[{a, b, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && GtQ[q, 1] && NeQ[n*(p + q) + 1, 0] &&  !IGtQ[p, 1] && IntB
inomialQ[a, b, c, d, n, p, q, x]

Rule 418

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticF[ArcT
an[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(a*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 492

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(x*Sqrt[a + b*x^2])/(b*Sqr
t[c + d*x^2]), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 531

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Dist[
e, Int[(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Dist[f, Int[x^n*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a,
b, c, d, e, f, n, p, q}, x]

Rubi steps

\begin {align*} \int \frac {\left (a+b x^2\right )^{3/2}}{\sqrt {c+d x^2}} \, dx &=\frac {b x \sqrt {a+b x^2} \sqrt {c+d x^2}}{3 d}+\frac {\int \frac {-a (b c-3 a d)-2 b (b c-2 a d) x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{3 d}\\ &=\frac {b x \sqrt {a+b x^2} \sqrt {c+d x^2}}{3 d}-\frac {(a (b c-3 a d)) \int \frac {1}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{3 d}-\frac {(2 b (b c-2 a d)) \int \frac {x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{3 d}\\ &=-\frac {2 (b c-2 a d) x \sqrt {a+b x^2}}{3 d \sqrt {c+d x^2}}+\frac {b x \sqrt {a+b x^2} \sqrt {c+d x^2}}{3 d}-\frac {\sqrt {c} (b c-3 a d) \sqrt {a+b x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 d^{3/2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}}+\frac {(2 c (b c-2 a d)) \int \frac {\sqrt {a+b x^2}}{\left (c+d x^2\right )^{3/2}} \, dx}{3 d}\\ &=-\frac {2 (b c-2 a d) x \sqrt {a+b x^2}}{3 d \sqrt {c+d x^2}}+\frac {b x \sqrt {a+b x^2} \sqrt {c+d x^2}}{3 d}+\frac {2 \sqrt {c} (b c-2 a d) \sqrt {a+b x^2} E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 d^{3/2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}}-\frac {\sqrt {c} (b c-3 a d) \sqrt {a+b x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 d^{3/2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.35, size = 216, normalized size = 0.83 \[ \frac {-i \sqrt {\frac {b x^2}{a}+1} \sqrt {\frac {d x^2}{c}+1} \left (3 a^2 d^2-5 a b c d+2 b^2 c^2\right ) \operatorname {EllipticF}\left (i \sinh ^{-1}\left (x \sqrt {\frac {b}{a}}\right ),\frac {a d}{b c}\right )+b d x \sqrt {\frac {b}{a}} \left (a+b x^2\right ) \left (c+d x^2\right )-2 i b c \sqrt {\frac {b x^2}{a}+1} \sqrt {\frac {d x^2}{c}+1} (2 a d-b c) E\left (i \sinh ^{-1}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )}{3 d^2 \sqrt {\frac {b}{a}} \sqrt {a+b x^2} \sqrt {c+d x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x^2)^(3/2)/Sqrt[c + d*x^2],x]

[Out]

(b*Sqrt[b/a]*d*x*(a + b*x^2)*(c + d*x^2) - (2*I)*b*c*(-(b*c) + 2*a*d)*Sqrt[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*
EllipticE[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)] - I*(2*b^2*c^2 - 5*a*b*c*d + 3*a^2*d^2)*Sqrt[1 + (b*x^2)/a]*Sqr
t[1 + (d*x^2)/c]*EllipticF[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)])/(3*Sqrt[b/a]*d^2*Sqrt[a + b*x^2]*Sqrt[c + d*x
^2])

________________________________________________________________________________________

fricas [F]  time = 0.61, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (b x^{2} + a\right )}^{\frac {3}{2}}}{\sqrt {d x^{2} + c}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(3/2)/(d*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

integral((b*x^2 + a)^(3/2)/sqrt(d*x^2 + c), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b x^{2} + a\right )}^{\frac {3}{2}}}{\sqrt {d x^{2} + c}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(3/2)/(d*x^2+c)^(1/2),x, algorithm="giac")

[Out]

integrate((b*x^2 + a)^(3/2)/sqrt(d*x^2 + c), x)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 399, normalized size = 1.53 \[ \frac {\sqrt {b \,x^{2}+a}\, \sqrt {d \,x^{2}+c}\, \left (\sqrt {-\frac {b}{a}}\, b^{2} d^{2} x^{5}+\sqrt {-\frac {b}{a}}\, a b \,d^{2} x^{3}+\sqrt {-\frac {b}{a}}\, b^{2} c d \,x^{3}+3 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, a^{2} d^{2} \EllipticF \left (\sqrt {-\frac {b}{a}}\, x , \sqrt {\frac {a d}{b c}}\right )+\sqrt {-\frac {b}{a}}\, a b c d x +4 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, a b c d \EllipticE \left (\sqrt {-\frac {b}{a}}\, x , \sqrt {\frac {a d}{b c}}\right )-5 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, a b c d \EllipticF \left (\sqrt {-\frac {b}{a}}\, x , \sqrt {\frac {a d}{b c}}\right )-2 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, b^{2} c^{2} \EllipticE \left (\sqrt {-\frac {b}{a}}\, x , \sqrt {\frac {a d}{b c}}\right )+2 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, b^{2} c^{2} \EllipticF \left (\sqrt {-\frac {b}{a}}\, x , \sqrt {\frac {a d}{b c}}\right )\right )}{3 \left (b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c \right ) \sqrt {-\frac {b}{a}}\, d^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2+a)^(3/2)/(d*x^2+c)^(1/2),x)

[Out]

1/3*(b*x^2+a)^(1/2)*(d*x^2+c)^(1/2)*((-1/a*b)^(1/2)*x^5*b^2*d^2+(-1/a*b)^(1/2)*x^3*a*b*d^2+(-1/a*b)^(1/2)*x^3*
b^2*c*d+3*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF((-1/a*b)^(1/2)*x,(a/b/c*d)^(1/2))*a^2*d^2-5*((b*x^
2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF((-1/a*b)^(1/2)*x,(a/b/c*d)^(1/2))*a*b*c*d+2*((b*x^2+a)/a)^(1/2)*((
d*x^2+c)/c)^(1/2)*EllipticF((-1/a*b)^(1/2)*x,(a/b/c*d)^(1/2))*b^2*c^2+4*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2
)*EllipticE((-1/a*b)^(1/2)*x,(a/b/c*d)^(1/2))*a*b*c*d-2*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE((-1/
a*b)^(1/2)*x,(a/b/c*d)^(1/2))*b^2*c^2+(-1/a*b)^(1/2)*x*a*b*c*d)/(b*d*x^4+a*d*x^2+b*c*x^2+a*c)/d^2/(-1/a*b)^(1/
2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b x^{2} + a\right )}^{\frac {3}{2}}}{\sqrt {d x^{2} + c}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(3/2)/(d*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((b*x^2 + a)^(3/2)/sqrt(d*x^2 + c), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\left (b\,x^2+a\right )}^{3/2}}{\sqrt {d\,x^2+c}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x^2)^(3/2)/(c + d*x^2)^(1/2),x)

[Out]

int((a + b*x^2)^(3/2)/(c + d*x^2)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (a + b x^{2}\right )^{\frac {3}{2}}}{\sqrt {c + d x^{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**2+a)**(3/2)/(d*x**2+c)**(1/2),x)

[Out]

Integral((a + b*x**2)**(3/2)/sqrt(c + d*x**2), x)

________________________________________________________________________________________